Journal of Hydrometeorology, Vol. 17, No. 6 (June 2016), pp. 1869-1883 (15 pages) ABSTRACT Classical regression models are widely used in hydrological regional frequency analysis (RFA) in order to ...
We develop a Bayesian method for nonparametric model—based quantile regression. The approach involves flexible Dirichlet process mixture models for the joint distribution of the response and the ...
In this paper we propose a semi-parametric, parsimonious value-at-risk forecasting model based on quantile regression and readily available market prices of option contracts from the over-the-counter ...
Dr. James McCaffrey from Microsoft Research presents a complete end-to-end demonstration of neural network quantile regression. The goal of a quantile regression problem is to predict a single numeric ...
The goal of a machine learning regression problem is to predict a single numeric value. Quantile regression is a variation where you are concerned with under-prediction or over-prediction. I'll phrase ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results